Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Toxicol Sci ; 198(2): 288-302, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38290791

RESUMO

Anthracyclines, such as doxorubicin (adriamycin), daunorubicin, or epirubicin, rank among the most effective agents in classical anticancer chemotherapy. However, cardiotoxicity remains the main limitation of their clinical use. Topoisomerase IIß has recently been identified as a plausible target of anthracyclines in cardiomyocytes. We examined the putative topoisomerase IIß selective agent XK469 as a potential cardioprotective and designed several new analogs. In our experiments, XK469 inhibited both topoisomerase isoforms (α and ß) and did not induce topoisomerase II covalent complexes in isolated cardiomyocytes and HL-60, but induced proteasomal degradation of topoisomerase II in these cell types. The cardioprotective potential of XK469 was studied on rat neonatal cardiomyocytes, where dexrazoxane (ICRF-187), the only clinically approved cardioprotective, was effective. Initially, XK469 prevented daunorubicin-induced toxicity and p53 phosphorylation in cardiomyocytes. However, it only partially prevented the phosphorylation of H2AX and did not affect DNA damage measured by Comet Assay. It also did not compromise the daunorubicin antiproliferative effect in HL-60 leukemic cells. When administered to rabbits to evaluate its cardioprotective potential in vivo, XK469 failed to prevent the daunorubicin-induced cardiac toxicity in either acute or chronic settings. In the following in vitro analysis, we found that prolonged and continuous exposure of rat neonatal cardiomyocytes to XK469 led to significant toxicity. In conclusion, this study provides important evidence on the effects of XK469 and its combination with daunorubicin in clinically relevant doses in cardiomyocytes. Despite its promising characteristics, long-term treatments and in vivo experiments have not confirmed its cardioprotective potential.


Assuntos
Antraciclinas , Quinoxalinas , Inibidores da Topoisomerase II , Ratos , Animais , Coelhos , Inibidores da Topoisomerase II/toxicidade , Inibidores da Topoisomerase II/uso terapêutico , Antraciclinas/toxicidade , Antraciclinas/uso terapêutico , Cardiotoxicidade , Daunorrubicina/toxicidade , Daunorrubicina/uso terapêutico , Doxorrubicina/toxicidade , Antibióticos Antineoplásicos/toxicidade , DNA Topoisomerases Tipo II/metabolismo , DNA Topoisomerases Tipo II/uso terapêutico , Dano ao DNA
2.
Sci Rep ; 13(1): 10499, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380669

RESUMO

This was a prospective cohort study of eighteen patients with large and debilitating vascular malformations with one or more major systemic complications. In all patients, we discovered activating alterations in either TEK or PIK3CA. Based on these findings, targeted treatment using the PI3K inhibitor alpelisib was started with regular check-ups, therapy duration varied from 6 to 31 months. In all patients, marked improvement in quality of life was observed. We observed radiological improvement in fourteen patients (two of them being on combination with either propranolol or sirolimus), stable disease in 2 patients. For 2 patients, an MRI scan was not available as they were shortly on treatment, however, a clinically visible response in size reduction or structure regression, together with pain relief was observed. In patients with elevated D-dimer levels before alpelisib administration, a major improvement was noted, suggesting its biomarker role. We observed overall very good tolerance of the treatment, documenting a single patient with grade 3 hyperglycemia. Patients with size reduction were offered local therapies wherever possible. Our report presents a promising approach for the treatment of VMs harboring different targetable TEK and PIK3CA gene mutations with a low toxicity profile and high efficacy.


Assuntos
Fosfatidilinositol 3-Quinases , Qualidade de Vida , Humanos , Fosfatidilinositol 3-Quinases/genética , Estudos Prospectivos , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação
3.
Front Pharmacol ; 14: 1298172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235109

RESUMO

Background: Anthracycline cardiotoxicity is a well-known complication of cancer treatment, and miRNAs have emerged as a key driver in the pathogenesis of cardiovascular diseases. This study aimed to investigate the expression of miRNAs in the myocardium in early and late stages of chronic anthracycline induced cardiotoxicity to determine whether this expression is associated with the severity of cardiac damage. Method: Cardiotoxicity was induced in rabbits via daunorubicin administration (daunorubicin, 3 mg/kg/week; for five and 10 weeks), while the control group received saline solution. Myocardial miRNA expression was first screened using TaqMan Advanced miRNA microfluidic card assays, after which 32 miRNAs were selected for targeted analysis using qRT-PCR. Results: The first subclinical signs of cardiotoxicity (significant increase in plasma cardiac troponin T) were observed after 5 weeks of daunorubicin treatment. At this time point, 10 miRNAs (including members of the miRNA-34 and 21 families) showed significant upregulation relative to the control group, with the most intense change observed for miRNA-1298-5p (29-fold change, p < 0.01). After 10 weeks of daunorubicin treatment, when a further rise in cTnT was accompanied by significant left ventricle systolic dysfunction, only miR-504-5p was significantly (p < 0.01) downregulated, whereas 10 miRNAs were significantly upregulated relative to the control group; at this time-point, the most intense change was observed for miR-34a-5p (76-fold change). Strong correlations were found between the expression of multiple miRNAs (including miR-34 and mir-21 family and miR-1298-5p) and quantitative indices of toxic damage in both the early and late phases of cardiotoxicity development. Furthermore, plasma levels of miR-34a-5p were strongly correlated with the myocardial expression of this miRNA. Conclusion: To the best of our knowledge, this is the first study that describes alterations in miRNA expression in the myocardium during the transition from subclinical, ANT-induced cardiotoxicity to an overt cardiotoxic phenotype; we also revealed how these changes in miRNA expression are strongly correlated with quantitative markers of cardiotoxicity.

4.
Front Pharmacol ; 13: 871193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496265

RESUMO

Objectives: To develop a rat model of intra-amniotic inflammation, characterized by the concentration of interleukin-6 in the amniotic fluid, induced by an ultrasound-guided transabdominal administration of lipopolysaccharide into individual gestational sacs. Methods: An ultrasound-guided transabdominal intra-amniotic administration of lipopolysaccharide or phosphate-buffered saline (PBS) as control was performed in rats on embryonic day 18. Only accessible gestational sacs with precise recording of their positions were injected. Twenty-four hours later, individual amniotic fluid samples were collected from the gestational sacs of laparotomized animals. The gestational sacs were divided into four subgroups: (i) with lipopolysaccharide: injected gestational sacs from rats undergoing lipopolysaccharide administration; (ii) without lipopolysaccharide: non-injected gestational sacs from rats undergoing lipopolysaccharide administration; (iii) with PBS: injected gestational sacs from rats undergoing PBS administration; and (iv) without PBS: non-injected gestational sacs from rats undergoing PBS administration. The concentration of interleukin-6 in individual amniotic fluid samples was assessed using ELISA. Results: In the group of five animals receiving lipopolysaccharide, 24 (33%) and 48 (77%) gestational sacs were and were not injected, respectively. The amniotic fluid was obtained from 21 (88%) injected and 46 (95%) non-injected sacs. In the control group of five animals receiving phosphate-buffered saline, 28 (35%) and 52 (75%) gestational sacs were and were not injected, respectively. The amniotic fluid was obtained from 18 (64%) injected and 50 (96%) non-injected sacs. No labor occurred, and only one fetal death was observed in a gestational sac injected with lipopolysaccharide. Differences in concentrations of interleukin-6 in the amniotic fluid were found among the subgroups of the gestational sacs (with lipopolysaccharide: median 762 pg/ml; without lipopolysaccharide: median 35.6 pg/ml; with PBS: median 35.6 pg/ml; and without PBS: median 35.6 pg/ml; p < 0.0001). Concentrations of interleukin-6 in the amniotic fluid from the gestational sacs with lipopolysaccharide were significantly higher than those in the three remaining subgroups (p < 0.0001). No differences in concentrations of interleukin-6 in the amniotic fluid were identified between the three remaining subgroups. Conclusion: The ultrasound-guided transabdominal intra-amniotic administration of lipopolysaccharide with a subsequent collection and analysis of amniotic fluid samples is feasible in rats. The intra-amniotic administration of lipopolysaccharide led to the development of intra-amniotic inflammation without leading to fetal mortality or induction of labor.

5.
Clin Sci (Lond) ; 136(1): 139-161, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34878093

RESUMO

Angiotensin-converting enzyme inhibitors (ACEis) have been used to treat anthracycline (ANT)-induced cardiac dysfunction, and they appear beneficial for secondary prevention in high-risk patients. However, it remains unclear whether they truly prevent ANT-induced cardiac damage and provide long-lasting cardioprotection. The present study aimed to examine the cardioprotective effects of perindopril on chronic ANT cardiotoxicity in a rabbit model previously validated with the cardioprotective agent dexrazoxane (DEX) with focus on post-treatment follow-up (FU). Chronic cardiotoxicity was induced by daunorubicin (DAU; 3 mg/kg/week for 10 weeks). Perindopril (0.05 mg/kg/day) was administered before and throughout chronic DAU treatment. After the completion of treatment, significant benefits were observed in perindopril co-treated animals, particularly full prevention of DAU-induced mortality and prevention or significant reductions in cardiac dysfunction, plasma cardiac troponin T (cTnT) levels, morphological damage, and most of the myocardial molecular alterations. However, these benefits significantly waned during 3 weeks of drug-free FU, which was not salvageable by administering a higher perindopril dose. In the longer (10-week) FU period, further worsening of left ventricular function and morphological damage occurred together with heart failure (HF)-related mortality. Continued perindopril treatment in the FU period did not reverse this trend but prevented HF-related mortality and reduced the severity of the progression of cardiac damage. These findings contrasted with the robust long-lasting protection observed previously for DEX in the same model. Hence, in the present study, perindopril provided only temporary control of ANT cardiotoxicity development, which may be associated with the lack of effects on ANT-induced and topoisomerase II ß (TOP2B)-dependent DNA damage responses in the heart.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Cardiotoxicidade/prevenção & controle , Daunorrubicina/efeitos adversos , Perindopril/uso terapêutico , Animais , Antibióticos Antineoplásicos , Cardiotoxicidade/tratamento farmacológico , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/mortalidade , Masculino , Coelhos , Troponina T/sangue
6.
Circ Heart Fail ; 14(11): e008209, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551586

RESUMO

BACKGROUND: Anthracycline-induced heart failure has been traditionally attributed to direct iron-catalyzed oxidative damage. Dexrazoxane (DEX)-the only drug approved for its prevention-has been believed to protect the heart via its iron-chelating metabolite ADR-925. However, direct evidence is lacking, and recently proposed TOP2B (topoisomerase II beta) hypothesis challenged the original concept. METHODS: Pharmacokinetically guided study of the cardioprotective effects of clinically used DEX and its chelating metabolite ADR-925 (administered exogenously) was performed together with mechanistic experiments. The cardiotoxicity was induced by daunorubicin in neonatal ventricular cardiomyocytes in vitro and in a chronic rabbit model in vivo (n=50). RESULTS: Intracellular concentrations of ADR-925 in neonatal ventricular cardiomyocytes and rabbit hearts after treatment with exogenous ADR-925 were similar or exceeded those observed after treatment with the parent DEX. However, ADR-925 did not protect neonatal ventricular cardiomyocytes against anthracycline toxicity, whereas DEX exhibited significant protective effects (10-100 µmol/L; P<0.001). Unlike DEX, ADR-925 also had no significant impact on daunorubicin-induced mortality, blood congestion, and biochemical and functional markers of cardiac dysfunction in vivo (eg, end point left ventricular fractional shortening was 32.3±14.7%, 33.5±4.8%, 42.7±1.0%, and 41.5±1.1% for the daunorubicin, ADR-925 [120 mg/kg]+daunorubicin, DEX [60 mg/kg]+daunorubicin, and control groups, respectively; P<0.05). DEX, but not ADR-925, inhibited and depleted TOP2B and prevented daunorubicin-induced genotoxic damage. TOP2B dependency of the cardioprotective effects was probed and supported by experiments with diastereomers of a new DEX derivative. CONCLUSIONS: This study strongly supports a new mechanistic paradigm that attributes clinically effective cardioprotection against anthracycline cardiotoxicity to interactions with TOP2B but not metal chelation and protection against direct oxidative damage.


Assuntos
Antraciclinas/farmacologia , Cardiotoxicidade/prevenção & controle , Dexrazoxano/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Inibidores da Topoisomerase II/metabolismo , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , DNA Topoisomerases Tipo II/efeitos adversos , DNA Topoisomerases Tipo II/metabolismo , Daunorrubicina/metabolismo , Daunorrubicina/farmacologia , Dexrazoxano/efeitos adversos , Cardiopatias/tratamento farmacológico , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos
7.
Clin Sci (Lond) ; 135(15): 1897-1914, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34318878

RESUMO

The anthracycline (ANT) anticancer drugs such as doxorubicin or daunorubicin (DAU) can cause serious myocardial injury and chronic cardiac dysfunction in cancer survivors. A bisdioxopiperazine agent dexrazoxane (DEX) has been developed as a cardioprotective drug to prevent these adverse events, but it is uncertain whether it is the best representative of the class. The present study used a rabbit model of chronic ANT cardiotoxicity to examine another bisdioxopiperazine compound called GK-667 (meso-(butane-2,3-diylbis(2,6-dioxopiperazine-4,1-diyl))bis(methylene)-bis(2-aminoacetate) hydrochloride), a water-soluble prodrug of ICRF-193 (meso-4,4'-(butan-2,3-diyl)bis(piperazine-2,6-dione)), as a potential cardioprotectant. The cardiotoxicity was induced by DAU (3 mg/kg, intravenously, weekly, 10 weeks), and GK-667 (1 or 5 mg/kg, intravenously) was administered before each DAU dose. The treatment with GK-667 was well tolerated and provided full protection against DAU-induced mortality and left ventricular (LV) dysfunction (determined by echocardiography and LV catheterization). Markers of cardiac damage/dysfunction revealed minor cardiac damage in the group co-treated with GK-667 in the lower dose, whereas almost full protection was achieved with the higher dose. This was associated with similar prevention of DAU-induced dysregulation of redox and calcium homeostasis proteins. GK-667 dose-dependently prevented tumor suppressor p53 (p53)-mediated DNA damage response in the LV myocardium not only in the chronic experiment but also after single DAU administration. These effects appear essential for cardioprotection, presumably because of the topoisomerase IIß (TOP2B) inhibition provided by its active metabolite ICRF-193. In addition, GK-667 administration did not alter the plasma pharmacokinetics of DAU and its main metabolite daunorubicinol (DAUol) in rabbits in vivo. Hence, GK-667 merits further investigation as a promising drug candidate for cardioprotection against chronic ANT cardiotoxicity.


Assuntos
Cardiomiopatias/prevenção & controle , Dano ao DNA , Dicetopiperazinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Pró-Fármacos/farmacologia , Inibidores da Topoisomerase II/farmacologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Cardiotoxicidade , Doença Crônica , Daunorrubicina , Modelos Animais de Doenças , Fibrose , Células HL-60 , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Coelhos , Proteína Supressora de Tumor p53/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
8.
J Med Chem ; 64(7): 3997-4019, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33750129

RESUMO

Cardioprotective activity of dexrazoxane (ICRF-187), the only clinically approved drug against anthracycline-induced cardiotoxicity, has traditionally been attributed to its iron-chelating metabolite. However, recent experimental evidence suggested that the inhibition and/or depletion of topoisomerase IIß (TOP2B) by dexrazoxane could be cardioprotective. Hence, we evaluated a series of dexrazoxane analogues and found that their cardioprotective activity strongly correlated with their interaction with TOP2B in cardiomyocytes, but was independent of their iron chelation ability. Very tight structure-activity relationships were demonstrated on stereoisomeric forms of 4,4'-(butane-2,3-diyl)bis(piperazine-2,6-dione). In contrast to its rac-form 12, meso-derivative 11 (ICRF-193) showed a favorable binding mode to topoisomerase II in silico, inhibited and depleted TOP2B in cardiomyocytes more efficiently than dexrazoxane, and showed the highest cardioprotective efficiency. Importantly, the observed ICRF-193 cardioprotection did not interfere with the antiproliferative activity of anthracycline. Hence, this study identifies ICRF-193 as the new lead compound in the development of efficient cardioprotective agents.


Assuntos
Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Piperazinas/uso terapêutico , Inibidores da Topoisomerase II/uso terapêutico , Animais , Animais Recém-Nascidos , Cardiotônicos/síntese química , Cardiotônicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Daunorrubicina/toxicidade , Dicetopiperazinas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Piperazinas/síntese química , Piperazinas/metabolismo , Ligação Proteica , Ratos Wistar , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/metabolismo
9.
Sci Rep ; 11(1): 4456, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627707

RESUMO

The bisdioxopiperazine topoisomerase IIß inhibitor ICRF-193 has been previously identified as a more potent analog of dexrazoxane (ICRF-187), a drug used in clinical practice against anthracycline cardiotoxicity. However, the poor aqueous solubility of ICRF-193 has precluded its further in vivo development as a cardioprotective agent. To overcome this issue, water-soluble prodrugs of ICRF-193 were prepared, their abilities to release ICRF-193 were investigated using a novel UHPLC-MS/MS assay, and their cytoprotective effects against anthracycline cardiotoxicity were tested in vitro in neonatal ventricular cardiomyocytes (NVCMs). Based on the obtained results, the bis(2-aminoacetoxymethyl)-type prodrug GK-667 was selected for advanced investigations due to its straightforward synthesis, sufficient solubility, low cytotoxicity and favorable ICRF-193 release. Upon administration of GK-667 to NVCMs, the released ICRF-193 penetrated well into the cells, reached sufficient intracellular concentrations and provided effective cytoprotection against anthracycline toxicity. The pharmacokinetics of the prodrug, ICRF-193 and its rings-opened metabolite was estimated in vivo after administration of GK-667 to rabbits. The plasma concentrations of ICRF-193 reached were found to be adequate to achieve cardioprotective effects in vivo. Hence, GK-667 was demonstrated to be a pharmaceutically acceptable prodrug of ICRF-193 and a promising drug candidate for further evaluation as a potential cardioprotectant against chronic anthracycline toxicity.


Assuntos
Antraciclinas/efeitos adversos , Cardiotônicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , DNA Topoisomerases Tipo II/metabolismo , Dicetopiperazinas/farmacologia , Piperazina/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Cardiotônicos/química , Cardiotoxicidade/metabolismo , Dexrazoxano/química , Dexrazoxano/farmacologia , Dicetopiperazinas/química , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Piperazina/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Coelhos , Razoxano/química , Razoxano/farmacologia , Inibidores da Topoisomerase II/química , Água/química
10.
Genes (Basel) ; 12(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546375

RESUMO

Spindle cell hemangioma is a benign vascular tumor typically occurring in the dermis or subcutis of distal extremities as red-brown lesions that can grow in both size and number over time. They can be very painful and potentially disabling. A family history of cancer or previous history may be relevant and must be taken into consideration. Juxtaglomerular cell tumor (reninoma) is an extremely rare cause of secondary hypertension diagnosed mostly among adolescents and young adults. Excessive renin secretion results in secondary hyperaldosteronism. Subsequent hypokalemia and metabolic alkalosis, together with high blood pressure, are clues for clinical diagnosis. Histological examination of the excised tumor leads to a definitive diagnosis. Reninoma is found in subcapsular localization, in most cases as a solitary mass, in imaging studies of kidneys. Exceptionally, it can be located in another part of a kidney. Both spindle cell hemangioma and reninoma are extremely rare tumors in children and adolescents. Herein, the authors present a case report of a patient with hereditary BRCA1 interacting protein C-terminal helicase 1 (BRIP1) mutation, spindle cell hemangioma, and secondary hypertension caused by atypically localized reninoma.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Predisposição Genética para Doença , Hemangioma/genética , RNA Helicases/genética , Mutação em Linhagem Germinativa/genética , Hemangioma/diagnóstico , Hemangioma/patologia , Humanos , Sistema Justaglomerular/patologia , Rim/metabolismo , Rim/patologia
11.
Eur J Heart Fail ; 22(11): 1966-1983, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33006257

RESUMO

Serum biomarkers are an important tool in the baseline risk assessment and diagnosis of cardiovascular disease in cancer patients receiving cardiotoxic cancer treatments. Increases in cardiac biomarkers including cardiac troponin and natriuretic peptides can be used to guide initiation of cardioprotective treatments for cancer patients during treatment and to monitor the response to cardioprotective treatments, and they also offer prognostic value. This position statement examines the role of cardiac biomarkers in the management of cancer patients. The Cardio-Oncology Study Group of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) in collaboration with the Cardio-Oncology Council of the ESC have evaluated the current evidence for the role of cardiovascular biomarkers in cancer patients before, during and after cardiotoxic cancer therapies. The characteristics of the main two biomarkers troponin and natriuretic peptides are discussed, the link to the mechanisms of cardiovascular toxicity, and the evidence for their clinical use in surveillance during and after anthracycline chemotherapy, trastuzumab and HER2-targeted therapies, vascular endothelial growth factor inhibitors, proteasome inhibitors, immune checkpoint inhibitors, cyclophosphamide and radiotherapy. Novel surveillance clinical pathways integrating cardiac biomarkers for cancer patients receiving anthracycline chemotherapy or trastuzumab biomarkers are presented and future direction in cardio-oncology biomarker research is discussed.


Assuntos
Antineoplásicos , Cardiotoxicidade , Insuficiência Cardíaca , Neoplasias , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Biomarcadores Tumorais/sangue , Cardiotônicos/administração & dosagem , Cardiotoxicidade/sangue , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/etiologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/diagnóstico , Humanos , Neoplasias/sangue , Neoplasias/tratamento farmacológico
12.
J Photochem Photobiol B ; 209: 111939, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32640366

RESUMO

Despite progress in the development and application of novel therapeutic agents, cancer remains a major cause of death worldwide. Therefore, there is a need for new approaches to increase therapeutic options and efficiency. The metabolism of cancer cells differs from that of non-malignant cells and their mitochondria show altered activities that can be utilized as a target for drug development. Salt 1 is a low-molecular weight heterocyclic compound of the polymethine class that accumulates in the mitochondria of cancer cells and selectively disrupts their metabolism. Salt 1 leads to a non-apoptotic form of cell death in vitro that is associated with an autophagic cellular response and eventual metabolic collapse, and inhibits human tumor xenograft growth in vivo without apparent toxicity for normal cells. As a pentamethinium compound, salt 1 exhibits intrinsic fluorescence and is a candidate for photosensitization after excitation by appropriate wavelengths of light. Herein, we report that salt 1 is a potent photosensitizer, which generates a photodynamic effect and provides enhanced cytotoxicity compared to salt 1 without light exposure. Importantly, photosensitization is optimally induced by red light, which is used clinically for photosensitization and penetrates further into tissues than lower wavelengths. Cancer cells treated with non-cytotoxic doses of salt 1 and subsequently exposed to 630 nm light show severely damaged mitochondria, manifested by reduced mitochondrial membrane potential and disintegration of the mitochondrial tubular network. As a consequence, cancer cells lose their proliferative potential and die via apoptosis in the presence of light. These findings indicate that salt 1 is a promising photosensitizer with potential to be combined with 630 nm light to strengthen its efficacy in cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Bis-Trimetilamônio/farmacologia , Mitocôndrias/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Humanos , Mitocôndrias/fisiologia , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo , Sais/química
13.
J Pharmacol Exp Ther ; 373(3): 402-415, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32253261

RESUMO

Bisdioxopiperazine agent dexrazoxane (ICRF-187) has been the only effective and approved drug for prevention of chronic anthracycline cardiotoxicity. However, the structure-activity relationships (SARs) of its cardioprotective effects remain obscure owing to limited investigation of its derivatives/analogs and uncertainties about its mechanism of action. To fill these knowledge gaps, we tested the hypothesis that dexrazoxane derivatives exert cardioprotection via metal chelation and/or modulation of topoisomerase IIß (Top2B) activity in chronic anthracycline cardiotoxicity. Dexrazoxane was alkylated in positions that should not interfere with the metal-chelating mechanism of cardioprotective action; that is, on dioxopiperazine imides or directly on the dioxopiperazine ring. The protective effects of these agents were assessed in vitro in neonatal cardiomyocytes. All studied modifications of dexrazoxane molecule, including simple methylation, were found to abolish the cardioprotective effects. Because this challenged the prevailing mechanistic concept and previously reported data, the two closest derivatives [(±)-4,4'-(propane-1,2-diyl)bis(1-methylpiperazine-2,6-dione) and 4-(2-(3,5-dioxopiperazin-1-yl)ethyl)-3-methylpiperazine-2,6-dione] were thoroughly scrutinized in vivo using a rabbit model of chronic anthracycline cardiotoxicity. In contrast to dexrazoxane, both compounds failed to protect the heart, as demonstrated by mortality, cardiac dysfunction, and myocardial damage parameters, although the pharmacokinetics and metal-chelating properties of their metabolites were comparable to those of dexrazoxane. The loss of cardiac protection was shown to correlate with their abated potential to inhibit and deplete Top2B both in vitro and in vivo. These findings suggest a very tight SAR between bisdioxopiperazine derivatives and their cardioprotective effects and support Top2B as a pivotal upstream druggable target for effective cardioprotection against anthracycline cardiotoxicity. SIGNIFICANCE STATEMENT: This study has revealed the previously unexpected tight structure-activity relationships of cardioprotective effects in derivatives of dexrazoxane, which is the only drug approved for the prevention of cardiomyopathy and heart failure induced by anthracycline anticancer drugs. The data presented in this study also strongly argue against the importance of metal-chelating mechanisms for the induction of this effect and support the viability of topoisomerase IIß as an upstream druggable target for effective and clinically translatable cardioprotection.


Assuntos
Antraciclinas/efeitos adversos , Cardiotoxicidade/tratamento farmacológico , DNA Topoisomerases Tipo II/metabolismo , Dexrazoxano/farmacologia , Coração/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Inibidores da Topoisomerase II/farmacologia , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Linhagem Celular Tumoral , Células HL-60 , Humanos , Masculino , Modelos Animais , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Coelhos , Ratos , Ratos Wistar , Relação Estrutura-Atividade
14.
Clin Sci (Lond) ; 133(16): 1827-1844, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31409729

RESUMO

Although proteasome inhibitors (PIs) are modern targeted anticancer drugs, they have been associated with a certain risk of cardiotoxicity and heart failure (HF). Recently, PIs have been combined with anthracyclines (ANTs) to further boost their anticancer efficacy. However, this raised concerns regarding cardiac safety, which were further supported by several in vitro studies on immature cardiomyocytes. In the present study, we investigated the toxicity of clinically used PIs alone (bortezomib (BTZ), carfilzomib (CFZ)) as well as their combinations with an ANT (daunorubicin (DAU)) in both neonatal and adult ventricular cardiomyocytes (NVCMs and AVCMs) and in a chronic rabbit model of DAU-induced HF. Using NVCMs, we found significant cytotoxicity of both PIs around their maximum plasma concentration (cmax) as well as significant augmentation of DAU cytotoxicity. In AVCMs, BTZ did not induce significant cytotoxicity in therapeutic concentrations, whereas the toxicity of CFZ was significant and more profound. Importantly, neither PI significantly augmented the cardiotoxicity of DAU despite even more profound proteasome-inhibitory activity in AVCMs compared with NVCMs. Furthermore, in young adult rabbits, no significant augmentation of chronic ANT cardiotoxicity was noted with respect to any functional, morphological, biochemical or molecular parameter under study, despite significant inhibition of myocardial proteasome activity. Our experimental data show that combination of PIs with ANTs is not accompanied by an exaggerated risk of cardiotoxicity and HF in young adult animal cardiomyocytes and hearts.


Assuntos
Antraciclinas/toxicidade , Antineoplásicos/toxicidade , Cardiotoxicidade/etiologia , Inibidores de Proteassoma/toxicidade , Animais , Antraciclinas/administração & dosagem , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Bortezomib/administração & dosagem , Bortezomib/toxicidade , Daunorrubicina/administração & dosagem , Daunorrubicina/toxicidade , Relação Dose-Resposta a Droga , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/toxicidade , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/administração & dosagem , Coelhos , Ratos , Ratos Wistar
15.
Int J Mol Sci ; 20(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466233

RESUMO

Cancer cells preferentially utilize glycolysis for ATP production even in aerobic conditions (the Warburg effect) and adapt mitochondrial processes to their specific needs. Recent studies indicate that altered mitochondrial activities in cancer represent an actionable target for therapy. We previously showed that salt 1-3C, a quinoxaline unit (with cytotoxic activity) incorporated into a meso-substituted pentamethinium salt (with mitochondrial selectivity and fluorescence properties), displayed potent cytotoxic effects in vitro and in vivo, without significant toxic effects to normal tissues. Here, we investigated the cytotoxic mechanism of salt 1-3C compared to its analogue, salt 1-8C, with an extended side carbon chain. Live cell imaging demonstrated that salt 1-3C, but not 1-8C, is rapidly incorporated into mitochondria, correlating with increased cytotoxicity of salt 1-3C. The accumulation in mitochondria led to their fragmentation and loss of function, accompanied by increased autophagy/mitophagy. Salt 1-3C preferentially activated AMP-activated kinase and inhibited mammalian target of rapamycin (mTOR) signaling pathways, sensors of cellular metabolism, but did not induce apoptosis. These data indicate that salt 1-3C cytotoxicity involves mitochondrial perturbation and disintegration, and such compounds are promising candidates for targeting mitochondria as a weak spot of cancer.


Assuntos
Antineoplásicos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitofagia , Compostos de Amônio Quaternário/farmacologia , Quinazolinas/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Antineoplásicos/química , Carbocianinas/química , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Compostos de Amônio Quaternário/química , Quinazolinas/química , Serina-Treonina Quinases TOR/metabolismo
16.
Med Res Rev ; 38(4): 1332-1403, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29315692

RESUMO

Cardiovascular diseases are a leading cause of morbidity and mortality in most developed countries of the world. Pharmaceuticals, illicit drugs, and toxins can significantly contribute to the overall cardiovascular burden and thus deserve attention. The present article is a systematic overview of drugs that may induce distinct cardiovascular toxicity. The compounds are classified into agents that have significant effects on the heart, blood vessels, or both. The mechanism(s) of toxic action are discussed and treatment modalities are briefly mentioned in relevant cases. Due to the large number of clinically relevant compounds discussed, this article could be of interest to a broad audience including pharmacologists and toxicologists, pharmacists, physicians, and medicinal chemists. Particular emphasis is given to clinically relevant topics including the cardiovascular toxicity of illicit sympathomimetic drugs (e.g., cocaine, amphetamines, cathinones), drugs that prolong the QT interval, antidysrhythmic drugs, digoxin and other cardioactive steroids, beta-blockers, calcium channel blockers, female hormones, nonsteroidal anti-inflammatory, and anticancer compounds encompassing anthracyclines and novel targeted therapy interfering with the HER2 or the vascular endothelial growth factor pathway.


Assuntos
Antagonistas Adrenérgicos beta/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Sistema Cardiovascular/efeitos dos fármacos , Esteroides/efeitos adversos , Alcaloides/efeitos adversos , Anfetaminas/efeitos adversos , Animais , Antiarrítmicos/efeitos adversos , Anti-Inflamatórios não Esteroides/efeitos adversos , Antineoplásicos/efeitos adversos , Bloqueadores dos Canais de Cálcio/efeitos adversos , Doenças Cardiovasculares/tratamento farmacológico , Cocaína/efeitos adversos , Digoxina/efeitos adversos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Hormônios/efeitos adversos , Humanos , Masculino , Acidente Vascular Cerebral/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular
17.
J Pharmacol Exp Ther ; 364(3): 433-446, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29273587

RESUMO

Dexrazoxane (DEX), the only cardioprotectant approved against anthracycline cardiotoxicity, has been traditionally deemed to be a prodrug of the iron-chelating metabolite ADR-925. However, pharmacokinetic profile of both agents, particularly with respect to the cells and tissues essential for its action (cardiomyocytes/myocardium), remains poorly understood. The aim of this study is to characterize the conversion and disposition of DEX to ADR-925 in vitro (primary cardiomyocytes) and in vivo (rabbits) under conditions where DEX is clearly cardioprotective against anthracycline cardiotoxicity. Our results show that DEX is hydrolyzed to ADR-925 in cell media independently of the presence of cardiomyocytes or their lysate. Furthermore, ADR-925 directly penetrates into the cells with contribution of active transport, and detectable concentrations occur earlier than after DEX incubation. In rabbits, ADR-925 was detected rapidly in plasma after DEX administration to form sustained concentrations thereafter. ADR-925 was not markedly retained in the myocardium, and its relative exposure was 5.7-fold lower than for DEX. Unlike liver tissue, myocardium homogenates did not accelerate the conversion of DEX to ADR-925 in vitro, suggesting that myocardial concentrations in vivo may originate from its distribution from the central compartment. The pharmacokinetic parameters for both DEX and ADR-925 were determined by both noncompartmental analyses and population pharmacokinetics (including joint parent-metabolite model). Importantly, all determined parameters were closer to human than to rodent data. The present results open venues for the direct assessment of the cardioprotective effects of ADR-925 in vitro and in vivo to establish whether DEX is a drug or prodrug.


Assuntos
Cardiotônicos/farmacocinética , Dexrazoxano/farmacocinética , Etilenodiaminas/farmacocinética , Glicina/análogos & derivados , Miócitos Cardíacos/metabolismo , Animais , Cardiotônicos/sangue , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Dexrazoxano/sangue , Dexrazoxano/metabolismo , Dexrazoxano/urina , Etilenodiaminas/metabolismo , Glicina/metabolismo , Glicina/farmacocinética , Coelhos , Ratos , Distribuição Tecidual
18.
Toxicology ; 392: 1-10, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28941780

RESUMO

Novel dexrazoxane derivative JR-311 was prepared to investigate structure-activity relationships and mechanism(s) of protection against anthracycline cardiotoxicity. Its cardioprotective, antiproliferative, iron (Fe) chelation and inhibitory and/or depletory activities on topoisomerase IIbeta (TOP2B) were examined and compared with dexrazoxane. While in standard assay, JR-311 failed in both cardioprotection and depletion of TOP2B, its repeated administration to cell culture media led to depletion of TOP2B and significant protection of isolated rat neonatal ventricular cardiomyocytes from daunorubicin-induced damage. This effect was explained by a focused analytical investigation that revealed rapid JR-311 decomposition, resulting in negligible intracellular concentrations of the parent compound but high exposure of cells to the decomposition products, including Fe-chelating JR-H2. Although chemical instability is an obstacle for the development of JR-311, this study identified a novel dexrazoxane analogue with preserved pharmacodynamic properties, contributed to the investigation of structure-activity relationships and suggested that the cardioprotection of bis-dioxopiperazines is likely attributed to TOP2B activity of the parent compound rather than Fe chelation of their hydrolytic metabolites/degradation products. Moreover, this study highlights the importance of early stability testing during future development of novel dexrazoxane analogues.


Assuntos
Cardiotônicos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Dexrazoxano/farmacologia , Quelantes de Ferro/farmacologia , Animais , Animais Recém-Nascidos , Antraciclinas/toxicidade , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Daunorrubicina/toxicidade , Dexrazoxano/análogos & derivados , Dicetopiperazinas/farmacologia , Ferro/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar , Relação Estrutura-Atividade
19.
Toxicology ; 372: 52-63, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27816693

RESUMO

Chronic anthracycline (ANT) cardiotoxicity is a serious complication of cancer chemotherapy. Molsidomine, a NO-releasing drug, has been found cardioprotective in different models of I/R injury and recently in acute high-dose ANT cardiotoxicity. Hence, we examined whether its cardioprotective effects are translatable to chronic ANT cardiotoxicity settings without induction of nitrosative stress and interference with antiproliferative action of ANTs. The effects of molsidomine (0.025 and 0.5mg/kg, i.v.) were studied on the well-established model of chronic ANT cardiotoxicity in rabbits (daunorubicin/DAU/3mg/kg/week for 10 weeks). Molsidomine was unable to significantly attenuate mortality, development of heart failure and morphological damage induced by DAU. Molsidomine did not alter DAU-induced myocardial lipoperoxidation, MnSOD down-regulation, up-regulation of HO-1, IL-6, and molecular markers of cardiac remodeling. Although molsidomine increased 3-nitrotyrosine in the myocardium, this event had no impact on cardiotoxicity development. Using H9c2 myoblasts and isolated cardiomyocytes, it was found that SIN-1 (an active metabolite of molsidomine) induces significant protection against ANT toxicity, but only at high concentrations. In leukemic HL-60 cells, SIN-1 initially augmented ANT cytotoxicity (in low and clinically achievable concentrations), but it protected these cells against ANT in the high concentrations. UHPLC-MS/MS investigation demonstrated that the loss of ANT cytotoxicity after co-incubation of the cells in vitro with high concentrations of SIN-1 is caused by unexpected chemical depletion of DAU molecule. The present study demonstrates that cardioprotective effects of molsidomine are not translatable to clinically relevant chronic form of ANT cardiotoxicity. The augmentation of antineoplastic effects of ANT in low (nM) concentrations may deserve further study.


Assuntos
Antraciclinas/toxicidade , Antibióticos Antineoplásicos/toxicidade , Cardiotônicos/farmacologia , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Molsidomina/farmacologia , Doadores de Óxido Nítrico/farmacologia , Animais , Cardiotoxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doença Crônica , Daunorrubicina/toxicidade , Doxorrubicina/toxicidade , Insuficiência Cardíaca/prevenção & controle , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...